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Abstract
This paper concerns the efficient construction of a safety shield for reinforcement learning. We
specifically target scenarios that incorporate uncertainty and use Markov decision processes (MDPs)
as the underlying model to capture such problems. Reinforcement learning (RL) is a machine
learning technique that can determine near-optimal policies in MDPs that may be unknown before
exploring the model. However, during exploration, RL is prone to induce behavior that is undesirable
or not allowed in safety- or mission-critical contexts. We introduce the concept of a probabilistic
shield that enables RL decision-making to adhere to safety constraints with high probability. We
employ formal verification to efficiently compute the probabilities of critical decisions within a
safety-relevant fragment of the MDP. These results help to realize a shield that, when applied to
an RL algorithm, restricts the agent from taking unsafe actions, while optimizing the performance
objective. We discuss tradeoffs between sufficient progress in the exploration of the environment
and ensuring safety. In our experiments, we demonstrate on the arcade game PAC-MAN and on a
case study involving service robots that the learning efficiency increases as the learning needs orders
of magnitude fewer episodes.
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1 Introduction

Recent years showed increased use of reinforcement learning (RL) in solving tasks such as
complex games [60] or robotic manipulation [67]. In RL, an agent perceives the surrounding
environment and acts towards maximizing a long-term reward. A major open challenge
for systems employing RL is the safety of decision-making [61, 30]. In particular during
the exploration phase – when an agent chooses random actions in order to examine its
surroundings – it is important to avoid actions that may cause unsafe outcomes. The area of
safe exploration investigates how RL agents may be forced to adhere to safety requirements
during this phase [54, 4].
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3:2 Safe Reinforcement Learning Using Probabilistic Shields

A suite of methods that deliver theoretical guarantees are so-called safety-shields [15].
Shields prevent an agent from taking unsafe actions at runtime. To this end, the performance
objective is extended with a constraint specifying that unsafe states should never be visited.
This new safety objective ensures there are no violations during the exploration phase.

We propose to incorporate constraints that enforce safety violations to occur only with
small probability. If an action increases the probability of a safety violation by more than
a threshold δ with respect to the optimal safety probability, the shield blocks the action.
Consequently, an agent augmented with a shield is guided to satisfy the safety objective
during exploration (or as long as the shield is used). The shield is adaptive with respect
to δ, as a high value for δ yields a stricter shield, a smaller value a more permissive shield.
The value for δ can be changed on-the-fly, and may depend on the individual minimal safety
probabilities at each state. Moreover, in case there is not suitable safe action with respect to
δ, the shield can always pick the optimal action as a fallback.

We base our formal notion of a probabilistic shield on MDPs, which constitute a popular
modeling formalism for decision-making under uncertainty [69] and is widely used in model-
based RL. We assess safety by means of probabilistic temporal logic constraints [7] that limit,
for example, the probability to reach a set of critical states in the MDP.

In order to assess the risk of one action, we (1) construct a behavior model for the
environment using model-based RL [26]. By plugging this model into any concrete scenario,
we obtain an MDP. To construct the shield, we (2) use a model-based verification technique
known as model checking [23, 7] that assesses whether a system model satisfies a specification.
In particular, we obtain precise safety probabilities of any possible decision within the MDP.
These probabilities can be looked up efficiently and compared to the threshold δ. The shield
then readily (3) augments either model-free or model-based RL.

We identify three key challenges. Firstly, model checking – as any model-based technique –
is susceptible to scalability issues. A key advantage of using a separate safety objective is
that we may analyze safety on just a fraction of the system, the safety-critical MDP. In
our experiments, these MDP fragments are at least ten orders of magnitude smaller than
a full model of the system, rendering model checking applicable to realistic scenarios. We
introduce further optimizations based on problem-specific abstraction techniques.

Secondly, without randomness, all states are either absolutely safe or unsafe. However, in
the presence of randomness, safety may be seen as a quantitative measure: in some states
certain actions induce a large risk, while others may be considered relatively safe. Therefore,
we propose an adaptive notion of shielding, in which the pre-selection of actions is not based
on absolute thresholds.

Lastly, shielding may restrict exploration and lead to suboptimal policies. Therefore, it
should not be considered in isolation. The trade-off between optimizing the performance
objective and the achieved safety is intricate. Intuitively, accepting small short term risks
may allow for efficient exploration and limit the risk long-term. To this end, we provide and
discuss mechanisms that allow to adjust the shield based on such observations.

We apply shielding to two distinct use cases: the arcade game PAC-MAN and a new case
study involving service robots in a warehouse. Shielded RL leads to improved policies for
both case studies with fewer safety violations and performance superior to unshielded RL.



N. Jansen, B. Könighofer, S. Junges, A. Serban, and R. Bloem 3:3

Related Work

Safety in RL

Safe RL [33, 54] is concerned with providing safety guarantees for learned agents. Our
work focusses on the safe exploration [52], we refer to [33] for other types of safe RL. Using
their taxonomy, shielding is an instance of “teacher provides advice” [24], where a teacher
with additional information about the system guides the RL agent to pick the right actions.
Apprenticeship learning [1] is a closely related variant where the teacher gives (positive)
examples and has been used in the context of verification [72]. Some of the work does
not assume a model for the environment, making the problem intrinsically harder – and
often limiting the safety during exploration. We refer to [52, 31, 21, 32, 37, 36, 38] for some
interesting approaches.

Shielding and non-probabilistic specifications

In the remainder of the work, we focus on related work that assumes that the (relevant)
dynamics are known. Let us focus on discrete systems first. Exploiting the progress in
reactive synthesis [13] provides a shield [44], a maximally permissive policy that contains all
actions that will not violate the safety specification. This approach has been shown to be
successful in combination with RL [3], and has some noticeable variants. In [68], the temporal
specification is extended with an unknown reward function. To enforce complex timing
behavior, shields from timed safety properties given as timed automata were considered in [14].
Finally, shielding multi-agent systems is considered in [11], and a shield for almost-sure
specifications in partially observable MDPs is introduced in [41].

Shielding and probabilistic specifications

The difference and novel contribution of this paper with the aforementioned papers is rooted
in the consideration of stochastic behavior, which is natural to RL. Intuitively, without
stochasticities, a learning agent does not take any risk, which is unrealistic in most scenarios.
Moreover, often one cannot assume that a 100% (or almost-sure) safety is realizable. A
permissive policy for these cases is provided in [29]. Such policies can also be computed
from abstract environments [51]. However, as there is no notion of maximally-permissive
policies for probabilistic guarentees, multiple permissive policies need to be deployed [42].
Furthermore, the computation of these permissive policies is even more expansive than
probabilistic model checking itself, harming scalability. A similar approach to ours was
developed independently in [16], but targets a different application area and does not consider
scalability issues of formal verification.

Continuous domains

In [71], shielding with qualitative guarantees for continuous domains is discussed. For
probabilistic properties and continuous MDPs, additional assumptions are necessary to
provide guarantees. Often, these assumption help make some ranking or barrier function [10,
53, 22, 34, 2], and have been extended to work with uncertain specifications [64]. UPPAAL
STRATEGO provides a number of algorithms combining safety synthesis with optimizing RL
for continuous space MDPs [25, 40].

CONCUR 2020



3:4 Safe Reinforcement Learning Using Probabilistic Shields

Reinforcement learning in verification

The recent area of programmatic reinforcement learning aims to find (simple) programs
rather than policies represented by deep neural networks, such that these programs can
be verified [8, 66, 65]. These approaches can be seen as an extension to guided policy
synthesis [50]. Such programs have also been used as shields [73]. More generally, Ashok et
al. [6, 5] consider post-processing controllers into decision trees. Recently, also the verification
of recurrent neural network controllers has been investigated [18]. These approaches do not
aim to generate permissive shields, but do post-processing to provide guarantees about the
final result. Simlarly, methods from reinforcement learning have been successfully employed
to improve the scalability of verification methods for MDPs [17, 57, 45] or other areas of
formal methods [20, 49].

2 Problem Statement

2.1 Foundations
A probability distribution over a countable setX is a function µ : X → [0, 1] with

∑
x∈X µ(x) =

1. Distr(X) denotes all distributions on X. The support of µ ∈ Distr(X) is supp(µ) = {x ∈
X | µ(x)>0}.

I Definition 1 (MDP). A Markov decision process (MDP)M = (S,Act,P, r) has a set S of
states, a finite set Act of actions, a (partial) probabilistic transition function P : S ×Act →
Distr(S), and an immediate reward function r : S ×Act → R≥0. For all s ∈ S the available
actions are Act(s) = {α ∈ Act | P(s, α) 6= ⊥} and we assume |Act(s)| ≥ 1.

MDPs operate by means of nondeterministic choices of actions at each state. A policy for
an MDP is a function σ : S∗ → Distr(Act) with supp(σ(s1 . . . sn)) ⊆ Act(sn) and S∗ a finite
sequence of states.

In formal methods, safety properties are often specified as linear temporal logic (LTL)
properties [55]. For an MDPM, probabilistic model checking [43, 47] employs value iteration
or linear programming to compute the probabilities of all states and actions of the MDP to
satisfy an LTL property ϕ. Specifically, we compute ηmax

ϕ,M : S → [0, 1] or ηmin
ϕ,M : S → [0, 1],

which yields for all states the minimal (or maximal) probability over all possible policies
to satisfy ϕ. For instance, for ϕ encoding to reach a set of states T , ηmax

ϕ,M(s) describes the
maximal probability to “eventually” reach a state in T .

2.2 Setting
We define a setting where one controllable agent (the avatar) and a number of uncontrollable
agents (the adversaries) operate within an arena. The arena is a compact, high-level
description of the underlying model. From this arena, the potential states and actions of all
agents may be inferred. For safety considerations, the reward structure can be neglected,
effectively reducing the state space for our model-based safety computations. Formally, an
arena is a directed graph G = (V,E) with a finite sets V of nodes and E ⊆ V × V of edges.
The agent’s position is defined via the current node v ∈ V . The agent decides on a new edge
(v, v′) ∈ E and determines its next position v′. Some (combinations of) agent positions are
safety-critical, as they e.g., correspond to collisions or falling off a cliff. A safety property
may describe reaching such positions, or use any other property expressible in (the safety
fragment of) temporal logic.
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While the underlying model for the arena suffices to specify the safe behavior, it is
not sufficiently succinct to model the performance via rewards. Consider an edge that is
safety-relevant, but the agent is only rewarded the first time taking this edge. In a flat model
with rewards, two different edges are necessary to model this behavior. However, the reward
(and thus the difference between these edges) is not needed to assess the safety, and the
safety-relevant model may be pruned to an exponentially smaller model. We use a token
function that implicitly extends the underlying model by a reward structure, enabling a
separation of concerns between safety and performance.

Technically, we associate edges with a token function ◦ : E → {0, 1}, indicating the status
of an edge. Tokens can be (de-) activated and have an associated reward earned upon taking
edges with an active token.

I Example 2 (Autonomous driving). An autonomous taxi (the avatar) operates within a
road network encoded by an arena. The taxi has to visit several points to pick up or drop
off passengers [28, 35]. Upon visiting such a point, a corresponding token activates and a
reward is earned, afterwards the token is deactivated permanently. Meanwhile, the taxi has
to account for other traffic participants or further environmental factors (the adversaries). A
sensible safety specification may restrict the probability for collision with other cars to 0.5%.
Note that the token structure is not relevant for such a specification.

I Example 3 (Robot logistics in a smart factory). Take a factory floor plan with several
corridors with machines. The adversaries are (possibly autonomous) transporters moving
parts within the factory. The avatar models a specific service unit moving around and
inspecting machines where an issue has been raised (as indicated by a token), while accounting
for the behavior of the adversaries. Corridors might be to narrow for multiple (facing) robots,
which poses a safety critical situation. The tokens allow to have a state-dependent cost, either
as long as they are present (indicating the costs of a broken machine) or for removing the
tokens (indicating costs for inspecting the machine). A similar scenario has been investigated
in [12].

2.3 Problem
Consider an environment described by an arena as above and a safety specification. We
assume stochastic behaviors for the adversaries, e.g, obtained using RL [58, 59] in a training
environment. In fact, this stochastic behavior determines all actions of the adversaries via
probabilities. The underlying model is then an MDP: the avatar executes an action, and upon
this execution the next exact positions (the state of the system) are determined stochastically.

We compute a δ-shield that prevents avatar decisions that violate this specification by
more than a threshold δ with respect to the optimal safety probability. We evaluate the
shield using a model-based or model-free RL avatar that aims to optimize the performance.
The shield therefore has to handle an intricate tradeoff between strictly focussing on (short
and midterm) safety and performance.

3 Constructing Shields for MDPs

We outline the workflow of our approach in Fig. 1, and describe it below. We employ a
separation of concerns between the model-based shield construction and potentially model-free
reinforcement learning (RL). First, we construct a behavior model for each adversary. Based
on this model and a concrete arena, we construct a compact MDP model: the safety-relevant
MDP quotient. In this MDP, we compute the shield which enables safe RL for the full MDP.
We now detail the individual technical steps to realize our proposed method.

CONCUR 2020
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Figure 1 Workflow of the Shield Construction.

3.1 Behavior Models for Adversaries
We learn an adversary model by observing behavior in a set of similar, but smaller arenas,
until we gain sufficient confidence that more training data would not change the behavior
significantly [58]. To reduce the size of the training set, we devise a data augmentation
technique using domain knowledge of the arenas [46, 70]. In particular, we abstract away
from the precise configuration of the arena by partitioning the graph into zones that are
relative to the view-point of the adversary (e. g., near or far, north or south, east or west).
The intuitive assumption is that the specific position of an adversary is not important, but
some key information is (e.g., the relation to the position of the avatar). This approach
(1) speeds up the learning process and (2) renders the resulting behavior model applicable
for varying the concrete instance of the same setting.

Zones are uniquely identified by a coloring with a finite set C of colors. Formally, for
an arena G = (V,E), zones relative to a node v ∈ V are given by a function zv : V → C.
For nodes x, y ∈ V , with zv(x) = zv(y), the assumption is that the adversary in v behaves
similarly regardless whether the avatar is in x or y. From our observations, we extract a
histogram h : E × C → N, where h(e, c) describes how often the adversary takes an edge
e = (v, v′) ∈ E while the avatar is in a node u with zv(u) = c. We translate these likelihoods
into distributions over possible edges in the arena.

I Definition 4 (Adversary Behavior). For an arena G = (V,E), zones zu : V → C for every
u ∈ V , and a histogram h : E × C → N, the adversary behavior is a function B : V × C →
Distr(E) with

B(v, c) =
h
(
(v, v′), c

)∑
(v,v′)∈E h

(
(v, v′), c

) .
While we employ a simple normalization of likelihoods, alternatively one may also utilize,
e. g., a softmax function which is adjustable to favor more or less likely decisions [62].

3.2 Safety-Relevant Quotient MDP
The construction of the MDPM = (S,Act,P) augments an arena by behavior models Bi.
First, the states S = V m+1 × {0, . . . ,m} encode the positions for all agents and whose turn
it is. The decision states of the safety-relevant MDPM are Sd = {sd ∈ S | sd = (. . . , 0)},



N. Jansen, B. Könighofer, S. Junges, A. Serban, and R. Bloem 3:7

i.e., it’s the turn of the avatar. The actions Act = {α0} ∪ ActE with ActE = {αe | e ∈ E}
determine the movements of the avatar and the adversaries. For (v, . . . , 0) = sd ∈ Sd (the
avatar moves next), the available actions are αe ∈ Act(sd) ⊆ Acte, where αe corresponds to
an outgoing edge of v. For (v, . . . , 0) = sd ∈ Sd, αe with e = (v, v′) leads with probability
one to a state se = (v′, . . . , 1). For (v, . . . , vi, . . . , i > 0) (an adversary moves next), there is
a unique action α0 where vi is changed to v′i, randomly determined according to the behavior
Bi, which also updates i to i+ 1 modulo m. These transitions induce the only probabilistic
choices in the MDP. A policy only has to choose an action at decision states. At all other
states, only the unique action α0 emanates. Consequently, a policy forM is a policy for the
avatar.

Under the assumption that the reward function is known and not discovered during the
exploration of the MDP, one can build the full MDP for the arena (V,E) and the token
function ◦ : E → {0, 1}. Then, one can compute the reward-optimal and safe policy without
need for further learning techniques. As there are 2E token configurations, the state space
blows up exponentially, which prevents the successful application of model checking or
planning techniques for anything but very small examples.

3.3 Shield Construction
For the safety-relevant MDP M, a set of unsafe states T ⊆ S should preferably not be
reached from any state. The property ϕ = ♦T encodes the violation of this safety constraint,
that is, eventually reaching T withinM. The shield needs to limit the probability to satisfy
ϕ. We evaluate all decision states sd ∈ Sd with respect to this probability: We compute
ηmin
ϕ,M(se), i.e., the minimal probability to satisfy ϕ from se, which is the state reached after
taking action αe ∈ Acte in sd.

I Definition 5 (Action-valuation). An action-valuation for each available action αe ∈ Acte
at each decision state sd ∈ Sd is given by

valMsd
: Act(sd)→ [0, 1], with valMsd

(αe) = ηmin
ϕ,M(se) .

The optimal action-value for sd is optvalMsd
= minα′∈Act valMsd

(α′), the set of all action-
valuations at sd is ActValssd

.

We now define a shield for the safety-relevant MDPM using the action values. Specifically, a
δ-shield for δ ∈ [0, 1] determines a set of actions at each decision state sd that are δ-optimal
for the specification ϕ. All other actions are “shielded” or “blocked”.

I Definition 6 (Shield). For action-valuation valMsd
and δ ∈ [0, 1], a δ-shield for state sd ∈ Sd

is given by

shield sd

δ : ActValssd
→ 2Act(sd)

with shield sd

δ 7→ {α ∈ Act(sd) | δ · valMsd
(α) ≤ optvalMsd

}.

Intuitively, δ enforces a constraint on actions that are acceptable with respect to the optimal
probability. The shield is adaptive with respect to δ, as a high value for δ yields a stricter
shield, a smaller value a more permissive shield. The shield is stored using a lookup-table,
and the value for δ can then be changed on-the-fly. In particularly critical situations, the
shield can enforce the decision-maker to resort to (only) the optimal actions w.r.t. the safety
objective. A δ-shield for the MDPM is built by constructing and applying δ-shields to all
decision states.

CONCUR 2020



3:8 Safe Reinforcement Learning Using Probabilistic Shields

I Definition 7 (Shielded MDP). The shielded MDPM = (S,Act P ) for a safety-relevant
quotient MDP M = (S,Act,P) and a δ-shield for all sd ∈ Sd is given by the transition
probability P with P (s, α) = P(s, α) if α ∈ shield sδ(valMs ) and P (s, α) = ⊥ otherwise.

I Lemma 8. If MDPM is deadlock-free if and only if the shielded MDPM is deadlock-free.

We compute the shield relative to optimal values optvalMsd
. Consequently, for δ = 1, only

optimal actions are preserved, and for δ = 0 no actions are blocked.

I Theorem 9. For an MDPM and a δ-shield, it holds for any state s that valMs = valMs .

As optimal actions for the safety objective are not removed, optimality w.r.t. safety is
preserved in the shielded MDP. Thus, during construction of the shield, we compute the
action-valuations in fact for the shielded MDP. Observe that computing a shield for a state
is done independently from the application of the shield to other states.

3.4 Guaranteed Safety
A δ-shield ensures that only actions that are δ-optimal with respect to an LTL property ϕ are
allowed. In particular, for each action α ∈ Acte at state se, we use the minimal probability
ηmin
ϕ,M(se) to satisfy ϕ, see Def. 5. Under optimal (subsequent) choices, the value ηmin

ϕ,M(se)
will be achieved. In contrast, a sequence of bad choices may violate ϕ with high probability.
A more conservative notion would be to use the minimal action value while assuming that in
all subsequent states the worst-case decisions corresponding to the maximal probabilities are
taken. These values are computable by model checking. Regardless of subsequent choices, at
least valMsd

(αe) is then guaranteed. A sensible notion to construct a shield would then be to
impose a threshold λ ∈ [0, 1] such that only actions with valMsd

(αe) ≤ λ are allowed. A shield
with such a guaranteed safety probability may induce a shielded MDP (Def. 7) that is not
deadlock free. Moreover, the shield may become too restrictive for the agent.

3.5 Scalable Shield Construction
Although we apply model checking only in the safety-relevant MDP, scalability issues for large
applications remain. We employ several optimizations towards computational tractability.

Finite Horizon

For infinite horizon properties, the probability to violate safety (in the long run) is often one
in our examples. Furthermore, our learned MDP model is inherently an approximation of
the real world. Errors originating from this approximation accumulate for growing horizons.
Thus, we focus on a finite horizon such that the action values (and consequently, a policy
for the avatar) carry only guarantees for the next steps. This assumption also allows us to
prune the safety-relevant MDP (see below), increasing the scalability.

Piecewise Construction

Computing a shield for all states in an MDP concurrently yields a large memory footprint.
To alleviate this footprint, we compute the shield states independently, in accordance with
Theorem 9. The independent computation prunes the relevant part of the MDP, as the
number of states reachable within the horizon is drastically reduced. Additionally, the
independent computation allows for parallelizing the computation.
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Independent Agents

The explosion of state spaces stems mostly from the number of agents. Here, an important
observation is that we can consider agents independently. For instance, the probability for the
avatar to crash with an adversary is stochastically independent from crashing with the others.
Instead of determining the shield for all adversaries at once, we perform computations for
each agent individually, and combine them via the inclusion-exclusion principle. Afterwards,
the shield is composed from the shields dedicated to individual adversaries.

Abstractions

We observe that for finite horizon properties and piecewise construction, adversaries may
be far away – beyond the horizon – without a chance to reach the avatar. We do not need
to consider such (positions for) adversaries, as in these states, the shield will not block any
actions.
Fewer Decision States. Depending on the setting, there might be only a few critical situa-

tions in which the agent requires shielding to ensure safety. The shield can be computed
for this critical states only. Consequently, the agent makes shielded decisions in the
adapted decision states, and unshielded decisions in all other ones.

Shielding versus Performance. A shield which is minimally invasive gives the RL agent
the most freedom to optimize the performance objective. We propose two methods to
alleviate invasiveness, all of them assume domain knowledge of the rationale behind the
decision procedure.

Iterative Weakening. During runtime, we may observe that the progress of the avatar
regarding the performance objective is not increasing anymore. Then, we weaken the
shield by δ− ε, allowing additional actions. As soon as progress is made, we reset δ to its
former value. The adaption of shield sδ to shield sδ−ε can be done on the fly, without new
computations.

Adapted Specifications. If the goal of the decision maker is known and can be captured
in temporal logic, we may adapt the original specification accordingly. There are often
natural trade-offs between safety and performance. These trade-offs might be resolved
via weights, but this process is often undesirable [56] and similar to reward engineering.
Instead, optimizing the conditional performance while assuming to stay sufficiently
safe [63], avoids side-effects of attaching some weights to the safety specification.

4 Implementation and Numerical Experiments

4.1 Set-up
We run experiments using an Intel Core i7-4790K CPU with 16 GB of RAM using 4 cores. We
give the timing results for a single CPU. Since the shield may be computed in a multi-threaded
architecture, this time can be divided by the number of cores available.

The supplementary materials, namely the source code and videos are available online1.
We demonstrate the applicability of our approach by means of two case studies. For both

case studies, we learn the adversary behavior in small arenas, individually for each adversary.
These behavior models are applicable to any benchmark instance, as they are independent of
concrete positions.

1 http://shieldrl.nilsjansen.org
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Figure 2 Video still for classic PAC-MAN.
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Figure 3 Training scores classic PAC-MAN.

For the arcade game PAC-MAN, PM (the avatar) aims to collect PAC-dots in a maze
and not get caught by ghosts (the adversaries). We model various instance of the game (with
different sizes) as an arena, where tokens represent the dots at each position in the maze,
such that a dot is either present or collected. The score (reward, performance) is positively
affected (+10) by collecting a dot and negatively by time (each step: -1). If PM either
collects all dots (+500) or is caught (-500), the game is restarted. RL approaches exist [9],
but they suffer from the fact that during the exploration phase PM is often caught by the
ghosts, achieving very poor scores. The safety specification places a lower bound on the
probability of reaching states in the underlying MDP that correspond to being caught.

We also consider a warehouse floor plan with several corridors. A similar scenario has
been investigated in [12]. In the arena, nodes describe crossings, the edges the corridors
with shelves, and the distances the corridor length. The agents are fork-lift units picking up
packages from the shelves and delivering them to the exit; tokens represent the presence of a
package at its position. The avatar is a specific (yellow) fork-lift unit that has to account for
other units, the adversaries. The performance (reward) is positively affected by loading and
delivering packages (+20, respectively) and negatively by time (each step: -1). Delivering all
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Figure 4 Video still for warehouse.
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Figure 5 Training scores warehouse.

packages yields a large bonus (+500) and a collision leads to a large punishment (-500), both
cases end the scenario. Corridors might be too narrow for multiple (facing) units, which
poses a safety-critical situation. Most crucial is the crowded area near the exit, since all
units have to deliver the packages to the exit.

Transferring the stochastic adversary behavior to any arena (without tokens) yields a
concrete safety-relevant MDP. In particular, we specify an arena with the positions of the
avatar and the adversaries as well as their behavior in the high-level PRISM-language [48].
We employ a script that automatically generates arenas to enable a broad set of benchmarks.
Taking, e.g., the PAC-MAN arena from Fig. 2, the considered MDP has roughly 1012 states
(compared to 1050 for the full MDP). For a safety-relevant MDP, we compute a δ-shield
(with iterative weakening) via the model checker Storm [27], using a horizon of 10 steps. The
immense size even of safety-relevant MDPs requires optimizations such as a piecewise and
independent shield construction. Moreover, a multi-threaded architecture lets us construct
shields for very large examples. In particular, we perform model checking for (many) MDPs
of roughly 106 states. The computation time for the largest PM instance takes about 6 hours
(single-threaded), while memory is not an issue due to the piecewise shield construction.
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Table 1 Average scores and win rates for PM.

Size,
#Ghosts

#Model
Checking time (s) Score

w/o Shield
Score w.

Shield
Win Rate
w/o Shield

Win Rate
w. Shield

9x7,1 5912 584 -359,6 535,3 0,04 0,84
17x6,2 5841 1072 -195,6 253,9 0,04 0,4

17x10,3 51732 3681 -220,79 -40,52 0,01 0,07
27x25,4 269426 19941 -129,25 339,89 0,00 0,00

We compare RL to shielded RL on different instances. The key comparison criterion is the
performance (detailed above) during learning. Our implementation is based on an existing
PAC-MAN environment2 using an approximate Q-learning agent [62] with the following
feature vectors:

for PAC-MAN: (1) distance to the closest dot, (2) whether a ghost collision is imminent,
and (3) whether a ghost is one step away.
for Warehouse: (1) has the unit loaded or unloaded, (2) the distance to the next package
and (3) to the exit, (4) whether another unit is three steps away and (5) one step away.

The results are basic reflex controllers. The Q-learning uses the learning rate α = 0.2 and the
discount factor γ = 0.8 for the Q-update and an ε-greedy exploration policy with ε = 0.05.
One episode lasts until either the game is restarted. We describe results for the training
phase of RL (300 episodes).

4.2 Results

Figures 2 and 4 show screenshots of a series of recommended videos (available in the
supplementary material). Each video compares how RL performs either shielded or unshielded
on a instance of the case study. In the shielded version, at each decision state in the underlying
MDP, we indicate the risk of decisions from low to high by the colors green, orange, red.

Consider PAC-MAN in detail: Figure 3 depicts the scores obtained during RL. The curves
(blue, solid: unshielded, orange, dashed: shielded) show the average scores for every ten
training episodes. Table 1 shows results for instances in increasing size. We list the number
of model checking calls and the time to construct the shield. We list the scores with and
without shield, and the winning rate capturing the ratio of successfully ended episodes. For
all instances, we see a large difference in scores due to the fact that PM is often rescued by
the shield. The winning rates differ for most benchmarks, favoring shielded RL. For three or
four ghosts, a shield with a ten-step horizon cannot guide PM to avoid being encircled by
the ghosts long enough to successfully end the game. Nevertheless, the shield often safes
PM, leading to superior scores. Moreover, the shield helps learning an optimal policy much
faster as fewer restarts are needed.

For the warehouse case study, we choose to vary the decision states, i.e., the positions of
the avatar for which we compute a shield. We present results for shielding the 2–8 crossings
closest to the exit. Figure 5 shows the average score for the different variants, Table 2
summarizes average score and win rate. Unsurprisingly, the score gets better the more states
are shielded. Furthermore, we have seen that shielding even more states has only a very
limited effect.

2 http://ai.berkeley.edu/project_overview.html

http://ai.berkeley.edu/project_overview.html
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Table 2 Average scores and win rates for warehouse.

Crossings shielded 0 2 4 8
Score -186 -27.6 303 420
Win Rate 0.16 0.31 0.59 0.71

5 Conclusion and Future Work

We developed the concept of shields for MDPs. Utilizing probabilistic model checking,
we maintained probabilistic safety measures during reinforcement learning. We addressed
inherent scalability issues and provided means to deal with typical trade-off between safety
and performance. Our experiments showed that we improved the state-of-the-art in safe
reinforcement learning.

For future work, we will extend the applications to more arcade games and employ deep
recurrent neural networks as means of decision-making [39, 19, 18]. Another interesting
direction is to explore (possibly model-free) learning of shields, instead of employing model-
based model checking.
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